Updated 29/Nov/2021 by Yoshihisa Nitta  

Analysis of Cycle Generative Adversarial Network for VidTIMIT dataset with Tensorflow 2 on Google Colab (WGAN-GP)

Assuming that you have already executed CycleGAN_VidTIMIT_Train.ipynb, analyzethe Model.

VidTIMIT データセットに対する Cycle Generative Adversarial Network をGoogle Colab 上の Tensorflow 2 で解析する

既に CycleGAN_VidTIMIT_Train.ipynb を実行していることを前提とし, 学習済みモデルを解析する。

In [ ]:
save_path = '/content/drive/MyDrive/ColabRun/CycleGAN_VidTIMIT01'
VERBOSE = False
In [ ]:
#! pip install tensorflow==2.7.0
In [ ]:
! pip install tensorflow_addons
Collecting tensorflow_addons
  Downloading tensorflow_addons-0.15.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)
     |████████████████████████████████| 1.1 MB 12.1 MB/s 
Requirement already satisfied: typeguard>=2.7 in /usr/local/lib/python3.7/dist-packages (from tensorflow_addons) (2.7.1)
Installing collected packages: tensorflow-addons
Successfully installed tensorflow-addons-0.15.0
In [ ]:
%tensorflow_version 2.x

import tensorflow as tf
print(tf.__version__)
2.7.0
In [ ]:
import numpy as np

np.random.seed(2022)

Check the Google Colab runtime environment

Google Colab 実行環境を調べる

In [ ]:
if VERBOSE:
    ! nvidia-smi
    ! cat /proc/cpuinfo
    ! cat /etc/issue
    ! free -h

Mount Google Drive from Google Colab

Google Colab から GoogleDrive をマウントする

In [ ]:
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
In [ ]:
if VERBOSE:
    ! ls /content/drive

Download source file from Google Drive or nw.tsuda.ac.jp

Basically, gdown from Google Drive. Only if you cannot download from Google Drive, wget from nw.tsuda.ac.jp.

Google Drive または nw.tsuda.ac.jp からファイルをダウンロードする

基本的に、Google Drive から gdown してください。 Google Drive からダウンロードができない場合にのみ、nw.tsuda.ac.jp から wget してください。

In [ ]:
# Download source file
nw_path = './nw'
! rm -rf {nw_path}
! mkdir -p {nw_path}

if True:   # from Google Drive
    url_model =  'https://drive.google.com/uc?id=1aNvpPDNeDWYQFu_PA1kOtFlzcO5seHky'
    ! (cd {nw_path}; gdown {url_model})
else:      # from nw.tsuda.ac.jp
    URL_NW = 'https://nw.tsuda.ac.jp/lec/GoogleColab/pub'
    url_model = f'{URL_NW}/models/CycleGAN.py'
    ! wget -nd {url_model} -P {nw_path}
Downloading...
From: https://drive.google.com/uc?id=1aNvpPDNeDWYQFu_PA1kOtFlzcO5seHky
To: /content/nw/CycleGAN.py
100% 24.6k/24.6k [00:00<00:00, 39.1MB/s]
In [ ]:
if VERBOSE:
    ! cat {nw_path}/CycleGAN.py

Preparing VidTIMIT dataset

Official WWW of VidTIMIT dataset: http://conradsanderson.id.au/vidtimit/

zip files of 2 persons of VidTIMIT dataset:
https://zenodo.org/record/158963/files/fadg0.zip
https://zenodo.org/record/158963/files/faks0.zip

zip files mirrored on my Google Drive:
https://drive.google.com/uc?id=

VidTIMIT データセットを用意する

VidTIMIT データセットの公式ページ: http://conradsanderson.id.au/vidtimit/

VidTIMIT の2名の顔写真の zip ファイル:
https://zenodo.org/record/158963/files/fadg0.zip
https://zenodo.org/record/158963/files/faks0.zip

自分の Google Drive 上にミラーした顔写真:
https://drive.google.com/uc?id= https://drive.google.com/uc?id=

In [ ]:
# Download zip files
VidTIMIT_site = 'https://zenodo.org/record/158963/files/'
VidTIMIT_fnames = [ 'fadg0', 'faks0']

Mirrored_files = [
    'https://drive.google.com/uc?id=1_Fv4p9MDNphMZMnLpEvtCtnwXgN8N5Cj', 
    'https://drive.google.com/uc?id=1Y8j7ThPVqB0gbx4hb9aMEp9Ptr9wFuoz'
]

data_dir = './datasets'
! rm -rf $data_dir
! mkdir -p $data_dir

for i, fname in enumerate(VidTIMIT_fnames):
    fzip = fname + '.zip'
    if False:
        url = VidTIMIT_site + fzip
        !wget {url}
    else:
        url = Mirrored_files[i]
        !gdown {url}

    !unzip -q {fzip} -d {data_dir}
Downloading...
From: https://drive.google.com/uc?id=1_Fv4p9MDNphMZMnLpEvtCtnwXgN8N5Cj
To: /content/fadg0.zip
100% 81.6M/81.6M [00:01<00:00, 52.0MB/s]
Downloading...
From: https://drive.google.com/uc?id=1Y8j7ThPVqB0gbx4hb9aMEp9Ptr9wFuoz
To: /content/faks0.zip
100% 64.2M/64.2M [00:00<00:00, 74.3MB/s]

Make DataGenerator from the images of VidTIMIT

VidTIMIT の画像ファイルから DataGenerator を作る

In [ ]:
IMAGE_SIZE = 128
In [ ]:
import os
import glob

imgA_paths = glob.glob(os.path.join(data_dir, VidTIMIT_fnames[0], 'video/*/[0-9]*'))
imgB_paths = glob.glob(os.path.join(data_dir, VidTIMIT_fnames[1], 'video/*/[0-9]*'))
In [ ]:
import numpy as np

validation_split = 0.05

nA, nB = len(imgA_paths), len(imgB_paths)
splitA = int(nA * (1 - validation_split))
splitB = int(nB * (1 - validation_split))

np.random.shuffle(imgA_paths)
np.random.shuffle(imgB_paths)

train_imgA_paths = imgA_paths[:splitA]
test_imgA_paths = imgA_paths[splitA:]
train_imgB_paths = imgB_paths[:splitB]
test_imgB_paths = imgB_paths[splitB:]
In [ ]:
# Image: [-1, 1] --> [0, 1]
def M1P1_ZeroP1(imgs):
    imgs = (imgs + 1) * 0.5
    return np.clip(imgs, 0, 1)

# Image: [0, 1] --> [-1, 1]
def ZeroP1_M1P1(imgs):
    return imgs * 2 - 1
In [ ]:
from nw.CycleGAN import PairDataset

pair_flow = PairDataset(train_imgA_paths, train_imgB_paths, target_size=(IMAGE_SIZE, IMAGE_SIZE))
test_pair_flow = PairDataset(test_imgA_paths, test_imgB_paths, target_size=(IMAGE_SIZE, IMAGE_SIZE))

Load the pretrained Neural Network Model

学習済みのニューラルネットワーク・モデルをロードする

In [ ]:
from nw.CycleGAN import CycleGAN

gan = CycleGAN.load(save_path, 350)

print(gan.epoch)
350

Check the loss and accuracy of the training process.

学習過程のlossと精度を確認する

In [ ]:
# Display the graph of losses in training
%matplotlib inline

gan.showLoss()
loss AB
loss BA

Generate Images

画像を生成する

In [ ]:
# Display images
# 画像を表示する。
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

def showImages(imgs, rows=-1, cols=-1, w=2, h=2):
    N = len(imgs)
    if rows < 0: rows = 1
    if cols < 0: cols = (N + rows -1) // rows
    fig, ax = plt.subplots(rows, cols, figsize=(w*cols, h*rows))
    idx = 0
    for row in range(rows):
        for col in range(cols) :
            if rows == 1 and cols == 1:
                axis = ax
            elif rows == 1:
                axis = ax[col]
            elif cols == 1:
                axis = ax[row]
            else:
                axis = ax[row][col]

            if idx < N:
                axis.imshow(imgs[idx])
            axis.axis('off')
            idx += 1
    plt.show()
In [ ]:
# Display generated and cycle images.
# 生成画像とサイクル画像を表示する。

test_pairs = test_pair_flow[:5]

test_imgsA = test_pairs[:,0]
test_imgsB = test_pairs[:,1]

imgsAB = gan.generate_image_from_A(test_imgsA)
imgsBA = gan.generate_image_from_B(test_imgsB)

print('A-->B-->A, ID')
showImages(M1P1_ZeroP1(imgsAB), 4)
print('B-->A-->B, ID')
showImages(M1P1_ZeroP1(imgsBA), 4)
A-->B-->A, ID
B-->A-->B, ID
In [ ]:
from nw.CycleGAN import CycleGAN

test_pairs = test_pair_flow[:5]

test_imgsA = test_pairs[:,0]
test_imgsB = test_pairs[:,1]

showImages(M1P1_ZeroP1(np.concatenate([test_imgsA, test_imgsB],axis=0)), 2)

for epoch in [200, 250, 300, 350, 400, 450, 500, 550, 600]:
    gan = CycleGAN.load(save_path, epoch)
    print(gan.epoch)
    imgsAB = gan.generate_image_from_A(test_imgsA)[5:10]
    imgsBA = gan.generate_image_from_B(test_imgsB)[5:10]
    
    showImages(M1P1_ZeroP1(np.concatenate([imgsAB, imgsBA],axis=0)), 2)
Output hidden; open in https://colab.research.google.com to view.
In [ ]: