public class Arrays extends Object
The methods in this class all throw a NullPointerException,
 if the specified array reference is null, except where noted.
 
The documentation for the methods contained in this class includes
 briefs description of the implementations. Such descriptions should
 be regarded as implementation notes, rather than parts of the
 specification. Implementors should feel free to substitute other
 algorithms, so long as the specification itself is adhered to. (For
 example, the algorithm used by sort(Object[]) does not have to be
 a MergeSort, but it does have to be stable.)
 
This class is a member of the Java Collections Framework.
| Modifier and Type | Method and Description | 
|---|---|
| static <T> List<T> | asList(T... a)Returns a fixed-size list backed by the specified array. | 
| static int | binarySearch(byte[] a,
            byte key)Searches the specified array of bytes for the specified value using the
 binary search algorithm. | 
| static int | binarySearch(byte[] a,
            int fromIndex,
            int toIndex,
            byte key)Searches a range of
 the specified array of bytes for the specified value using the
 binary search algorithm. | 
| static int | binarySearch(char[] a,
            char key)Searches the specified array of chars for the specified value using the
 binary search algorithm. | 
| static int | binarySearch(char[] a,
            int fromIndex,
            int toIndex,
            char key)Searches a range of
 the specified array of chars for the specified value using the
 binary search algorithm. | 
| static int | binarySearch(double[] a,
            double key)Searches the specified array of doubles for the specified value using
 the binary search algorithm. | 
| static int | binarySearch(double[] a,
            int fromIndex,
            int toIndex,
            double key)Searches a range of
 the specified array of doubles for the specified value using
 the binary search algorithm. | 
| static int | binarySearch(float[] a,
            float key)Searches the specified array of floats for the specified value using
 the binary search algorithm. | 
| static int | binarySearch(float[] a,
            int fromIndex,
            int toIndex,
            float key)Searches a range of
 the specified array of floats for the specified value using
 the binary search algorithm. | 
| static int | binarySearch(int[] a,
            int key)Searches the specified array of ints for the specified value using the
 binary search algorithm. | 
| static int | binarySearch(int[] a,
            int fromIndex,
            int toIndex,
            int key)Searches a range of
 the specified array of ints for the specified value using the
 binary search algorithm. | 
| static int | binarySearch(long[] a,
            int fromIndex,
            int toIndex,
            long key)Searches a range of
 the specified array of longs for the specified value using the
 binary search algorithm. | 
| static int | binarySearch(long[] a,
            long key)Searches the specified array of longs for the specified value using the
 binary search algorithm. | 
| static int | binarySearch(Object[] a,
            int fromIndex,
            int toIndex,
            Object key)Searches a range of
 the specified array for the specified object using the binary
 search algorithm. | 
| static int | binarySearch(Object[] a,
            Object key)Searches the specified array for the specified object using the binary
 search algorithm. | 
| static int | binarySearch(short[] a,
            int fromIndex,
            int toIndex,
            short key)Searches a range of
 the specified array of shorts for the specified value using
 the binary search algorithm. | 
| static int | binarySearch(short[] a,
            short key)Searches the specified array of shorts for the specified value using
 the binary search algorithm. | 
| static <T> int | binarySearch(T[] a,
            int fromIndex,
            int toIndex,
            T key,
            Comparator<? super T> c)Searches a range of
 the specified array for the specified object using the binary
 search algorithm. | 
| static <T> int | binarySearch(T[] a,
            T key,
            Comparator<? super T> c)Searches the specified array for the specified object using the binary
 search algorithm. | 
| static boolean[] | copyOf(boolean[] original,
      int newLength)Copies the specified array, truncating or padding with false (if necessary)
 so the copy has the specified length. | 
| static byte[] | copyOf(byte[] original,
      int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
 so the copy has the specified length. | 
| static char[] | copyOf(char[] original,
      int newLength)Copies the specified array, truncating or padding with null characters (if necessary)
 so the copy has the specified length. | 
| static double[] | copyOf(double[] original,
      int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
 so the copy has the specified length. | 
| static float[] | copyOf(float[] original,
      int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
 so the copy has the specified length. | 
| static int[] | copyOf(int[] original,
      int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
 so the copy has the specified length. | 
| static long[] | copyOf(long[] original,
      int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
 so the copy has the specified length. | 
| static short[] | copyOf(short[] original,
      int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
 so the copy has the specified length. | 
| static <T> T[] | copyOf(T[] original,
      int newLength)Copies the specified array, truncating or padding with nulls (if necessary)
 so the copy has the specified length. | 
| static <T,U> T[] | copyOf(U[] original,
      int newLength,
      Class<? extends T[]> newType)Copies the specified array, truncating or padding with nulls (if necessary)
 so the copy has the specified length. | 
| static boolean[] | copyOfRange(boolean[] original,
           int from,
           int to)Copies the specified range of the specified array into a new array. | 
| static byte[] | copyOfRange(byte[] original,
           int from,
           int to)Copies the specified range of the specified array into a new array. | 
| static char[] | copyOfRange(char[] original,
           int from,
           int to)Copies the specified range of the specified array into a new array. | 
| static double[] | copyOfRange(double[] original,
           int from,
           int to)Copies the specified range of the specified array into a new array. | 
| static float[] | copyOfRange(float[] original,
           int from,
           int to)Copies the specified range of the specified array into a new array. | 
| static int[] | copyOfRange(int[] original,
           int from,
           int to)Copies the specified range of the specified array into a new array. | 
| static long[] | copyOfRange(long[] original,
           int from,
           int to)Copies the specified range of the specified array into a new array. | 
| static short[] | copyOfRange(short[] original,
           int from,
           int to)Copies the specified range of the specified array into a new array. | 
| static <T> T[] | copyOfRange(T[] original,
           int from,
           int to)Copies the specified range of the specified array into a new array. | 
| static <T,U> T[] | copyOfRange(U[] original,
           int from,
           int to,
           Class<? extends T[]> newType)Copies the specified range of the specified array into a new array. | 
| static boolean | deepEquals(Object[] a1,
          Object[] a2)Returns true if the two specified arrays are deeply
 equal to one another. | 
| static int | deepHashCode(Object[] a)Returns a hash code based on the "deep contents" of the specified
 array. | 
| static String | deepToString(Object[] a)Returns a string representation of the "deep contents" of the specified
 array. | 
| static boolean | equals(boolean[] a,
      boolean[] a2)Returns true if the two specified arrays of booleans are
 equal to one another. | 
| static boolean | equals(byte[] a,
      byte[] a2)Returns true if the two specified arrays of bytes are
 equal to one another. | 
| static boolean | equals(char[] a,
      char[] a2)Returns true if the two specified arrays of chars are
 equal to one another. | 
| static boolean | equals(double[] a,
      double[] a2)Returns true if the two specified arrays of doubles are
 equal to one another. | 
| static boolean | equals(float[] a,
      float[] a2)Returns true if the two specified arrays of floats are
 equal to one another. | 
| static boolean | equals(int[] a,
      int[] a2)Returns true if the two specified arrays of ints are
 equal to one another. | 
| static boolean | equals(long[] a,
      long[] a2)Returns true if the two specified arrays of longs are
 equal to one another. | 
| static boolean | equals(Object[] a,
      Object[] a2)Returns true if the two specified arrays of Objects are
 equal to one another. | 
| static boolean | equals(short[] a,
      short[] a2)Returns true if the two specified arrays of shorts are
 equal to one another. | 
| static void | fill(boolean[] a,
    boolean val)Assigns the specified boolean value to each element of the specified
 array of booleans. | 
| static void | fill(boolean[] a,
    int fromIndex,
    int toIndex,
    boolean val)Assigns the specified boolean value to each element of the specified
 range of the specified array of booleans. | 
| static void | fill(byte[] a,
    byte val)Assigns the specified byte value to each element of the specified array
 of bytes. | 
| static void | fill(byte[] a,
    int fromIndex,
    int toIndex,
    byte val)Assigns the specified byte value to each element of the specified
 range of the specified array of bytes. | 
| static void | fill(char[] a,
    char val)Assigns the specified char value to each element of the specified array
 of chars. | 
| static void | fill(char[] a,
    int fromIndex,
    int toIndex,
    char val)Assigns the specified char value to each element of the specified
 range of the specified array of chars. | 
| static void | fill(double[] a,
    double val)Assigns the specified double value to each element of the specified
 array of doubles. | 
| static void | fill(double[] a,
    int fromIndex,
    int toIndex,
    double val)Assigns the specified double value to each element of the specified
 range of the specified array of doubles. | 
| static void | fill(float[] a,
    float val)Assigns the specified float value to each element of the specified array
 of floats. | 
| static void | fill(float[] a,
    int fromIndex,
    int toIndex,
    float val)Assigns the specified float value to each element of the specified
 range of the specified array of floats. | 
| static void | fill(int[] a,
    int val)Assigns the specified int value to each element of the specified array
 of ints. | 
| static void | fill(int[] a,
    int fromIndex,
    int toIndex,
    int val)Assigns the specified int value to each element of the specified
 range of the specified array of ints. | 
| static void | fill(long[] a,
    int fromIndex,
    int toIndex,
    long val)Assigns the specified long value to each element of the specified
 range of the specified array of longs. | 
| static void | fill(long[] a,
    long val)Assigns the specified long value to each element of the specified array
 of longs. | 
| static void | fill(Object[] a,
    int fromIndex,
    int toIndex,
    Object val)Assigns the specified Object reference to each element of the specified
 range of the specified array of Objects. | 
| static void | fill(Object[] a,
    Object val)Assigns the specified Object reference to each element of the specified
 array of Objects. | 
| static void | fill(short[] a,
    int fromIndex,
    int toIndex,
    short val)Assigns the specified short value to each element of the specified
 range of the specified array of shorts. | 
| static void | fill(short[] a,
    short val)Assigns the specified short value to each element of the specified array
 of shorts. | 
| static int | hashCode(boolean[] a)Returns a hash code based on the contents of the specified array. | 
| static int | hashCode(byte[] a)Returns a hash code based on the contents of the specified array. | 
| static int | hashCode(char[] a)Returns a hash code based on the contents of the specified array. | 
| static int | hashCode(double[] a)Returns a hash code based on the contents of the specified array. | 
| static int | hashCode(float[] a)Returns a hash code based on the contents of the specified array. | 
| static int | hashCode(int[] a)Returns a hash code based on the contents of the specified array. | 
| static int | hashCode(long[] a)Returns a hash code based on the contents of the specified array. | 
| static int | hashCode(Object[] a)Returns a hash code based on the contents of the specified array. | 
| static int | hashCode(short[] a)Returns a hash code based on the contents of the specified array. | 
| static void | parallelPrefix(double[] array,
              DoubleBinaryOperator op)Cumulates, in parallel, each element of the given array in place,
 using the supplied function. | 
| static void | parallelPrefix(double[] array,
              int fromIndex,
              int toIndex,
              DoubleBinaryOperator op)Performs  parallelPrefix(double[], DoubleBinaryOperator)for the given subrange of the array. | 
| static void | parallelPrefix(int[] array,
              IntBinaryOperator op)Cumulates, in parallel, each element of the given array in place,
 using the supplied function. | 
| static void | parallelPrefix(int[] array,
              int fromIndex,
              int toIndex,
              IntBinaryOperator op)Performs  parallelPrefix(int[], IntBinaryOperator)for the given subrange of the array. | 
| static void | parallelPrefix(long[] array,
              int fromIndex,
              int toIndex,
              LongBinaryOperator op)Performs  parallelPrefix(long[], LongBinaryOperator)for the given subrange of the array. | 
| static void | parallelPrefix(long[] array,
              LongBinaryOperator op)Cumulates, in parallel, each element of the given array in place,
 using the supplied function. | 
| static <T> void | parallelPrefix(T[] array,
              BinaryOperator<T> op)Cumulates, in parallel, each element of the given array in place,
 using the supplied function. | 
| static <T> void | parallelPrefix(T[] array,
              int fromIndex,
              int toIndex,
              BinaryOperator<T> op)Performs  parallelPrefix(Object[], BinaryOperator)for the given subrange of the array. | 
| static void | parallelSetAll(double[] array,
              IntToDoubleFunction generator)Set all elements of the specified array, in parallel, using the
 provided generator function to compute each element. | 
| static void | parallelSetAll(int[] array,
              IntUnaryOperator generator)Set all elements of the specified array, in parallel, using the
 provided generator function to compute each element. | 
| static void | parallelSetAll(long[] array,
              IntToLongFunction generator)Set all elements of the specified array, in parallel, using the
 provided generator function to compute each element. | 
| static <T> void | parallelSetAll(T[] array,
              IntFunction<? extends T> generator)Set all elements of the specified array, in parallel, using the
 provided generator function to compute each element. | 
| static void | parallelSort(byte[] a)Sorts the specified array into ascending numerical order. | 
| static void | parallelSort(byte[] a,
            int fromIndex,
            int toIndex)Sorts the specified range of the array into ascending numerical order. | 
| static void | parallelSort(char[] a)Sorts the specified array into ascending numerical order. | 
| static void | parallelSort(char[] a,
            int fromIndex,
            int toIndex)Sorts the specified range of the array into ascending numerical order. | 
| static void | parallelSort(double[] a)Sorts the specified array into ascending numerical order. | 
| static void | parallelSort(double[] a,
            int fromIndex,
            int toIndex)Sorts the specified range of the array into ascending numerical order. | 
| static void | parallelSort(float[] a)Sorts the specified array into ascending numerical order. | 
| static void | parallelSort(float[] a,
            int fromIndex,
            int toIndex)Sorts the specified range of the array into ascending numerical order. | 
| static void | parallelSort(int[] a)Sorts the specified array into ascending numerical order. | 
| static void | parallelSort(int[] a,
            int fromIndex,
            int toIndex)Sorts the specified range of the array into ascending numerical order. | 
| static void | parallelSort(long[] a)Sorts the specified array into ascending numerical order. | 
| static void | parallelSort(long[] a,
            int fromIndex,
            int toIndex)Sorts the specified range of the array into ascending numerical order. | 
| static void | parallelSort(short[] a)Sorts the specified array into ascending numerical order. | 
| static void | parallelSort(short[] a,
            int fromIndex,
            int toIndex)Sorts the specified range of the array into ascending numerical order. | 
| static <T extends Comparable<? super T>> | parallelSort(T[] a)Sorts the specified array of objects into ascending order, according
 to the natural ordering of its elements. | 
| static <T> void | parallelSort(T[] a,
            Comparator<? super T> cmp)Sorts the specified array of objects according to the order induced by
 the specified comparator. | 
| static <T extends Comparable<? super T>> | parallelSort(T[] a,
            int fromIndex,
            int toIndex)Sorts the specified range of the specified array of objects into
 ascending order, according to the
 natural ordering of its
 elements. | 
| static <T> void | parallelSort(T[] a,
            int fromIndex,
            int toIndex,
            Comparator<? super T> cmp)Sorts the specified range of the specified array of objects according
 to the order induced by the specified comparator. | 
| static void | setAll(double[] array,
      IntToDoubleFunction generator)Set all elements of the specified array, using the provided
 generator function to compute each element. | 
| static void | setAll(int[] array,
      IntUnaryOperator generator)Set all elements of the specified array, using the provided
 generator function to compute each element. | 
| static void | setAll(long[] array,
      IntToLongFunction generator)Set all elements of the specified array, using the provided
 generator function to compute each element. | 
| static <T> void | setAll(T[] array,
      IntFunction<? extends T> generator)Set all elements of the specified array, using the provided
 generator function to compute each element. | 
| static void | sort(byte[] a)Sorts the specified array into ascending numerical order. | 
| static void | sort(byte[] a,
    int fromIndex,
    int toIndex)Sorts the specified range of the array into ascending order. | 
| static void | sort(char[] a)Sorts the specified array into ascending numerical order. | 
| static void | sort(char[] a,
    int fromIndex,
    int toIndex)Sorts the specified range of the array into ascending order. | 
| static void | sort(double[] a)Sorts the specified array into ascending numerical order. | 
| static void | sort(double[] a,
    int fromIndex,
    int toIndex)Sorts the specified range of the array into ascending order. | 
| static void | sort(float[] a)Sorts the specified array into ascending numerical order. | 
| static void | sort(float[] a,
    int fromIndex,
    int toIndex)Sorts the specified range of the array into ascending order. | 
| static void | sort(int[] a)Sorts the specified array into ascending numerical order. | 
| static void | sort(int[] a,
    int fromIndex,
    int toIndex)Sorts the specified range of the array into ascending order. | 
| static void | sort(long[] a)Sorts the specified array into ascending numerical order. | 
| static void | sort(long[] a,
    int fromIndex,
    int toIndex)Sorts the specified range of the array into ascending order. | 
| static void | sort(Object[] a)Sorts the specified array of objects into ascending order, according
 to the natural ordering of its elements. | 
| static void | sort(Object[] a,
    int fromIndex,
    int toIndex)Sorts the specified range of the specified array of objects into
 ascending order, according to the
 natural ordering of its
 elements. | 
| static void | sort(short[] a)Sorts the specified array into ascending numerical order. | 
| static void | sort(short[] a,
    int fromIndex,
    int toIndex)Sorts the specified range of the array into ascending order. | 
| static <T> void | sort(T[] a,
    Comparator<? super T> c)Sorts the specified array of objects according to the order induced by
 the specified comparator. | 
| static <T> void | sort(T[] a,
    int fromIndex,
    int toIndex,
    Comparator<? super T> c)Sorts the specified range of the specified array of objects according
 to the order induced by the specified comparator. | 
| static Spliterator.OfDouble | spliterator(double[] array)Returns a  Spliterator.OfDoublecovering all of the specified
 array. | 
| static Spliterator.OfDouble | spliterator(double[] array,
           int startInclusive,
           int endExclusive)Returns a  Spliterator.OfDoublecovering the specified range of
 the specified array. | 
| static Spliterator.OfInt | spliterator(int[] array)Returns a  Spliterator.OfIntcovering all of the specified array. | 
| static Spliterator.OfInt | spliterator(int[] array,
           int startInclusive,
           int endExclusive)Returns a  Spliterator.OfIntcovering the specified range of the
 specified array. | 
| static Spliterator.OfLong | spliterator(long[] array)Returns a  Spliterator.OfLongcovering all of the specified array. | 
| static Spliterator.OfLong | spliterator(long[] array,
           int startInclusive,
           int endExclusive)Returns a  Spliterator.OfLongcovering the specified range of the
 specified array. | 
| static <T> Spliterator<T> | spliterator(T[] array)Returns a  Spliteratorcovering all of the specified array. | 
| static <T> Spliterator<T> | spliterator(T[] array,
           int startInclusive,
           int endExclusive)Returns a  Spliteratorcovering the specified range of the
 specified array. | 
| static DoubleStream | stream(double[] array)Returns a sequential  DoubleStreamwith the specified array as its
 source. | 
| static DoubleStream | stream(double[] array,
      int startInclusive,
      int endExclusive)Returns a sequential  DoubleStreamwith the specified range of the
 specified array as its source. | 
| static IntStream | stream(int[] array)Returns a sequential  IntStreamwith the specified array as its
 source. | 
| static IntStream | stream(int[] array,
      int startInclusive,
      int endExclusive)Returns a sequential  IntStreamwith the specified range of the
 specified array as its source. | 
| static LongStream | stream(long[] array)Returns a sequential  LongStreamwith the specified array as its
 source. | 
| static LongStream | stream(long[] array,
      int startInclusive,
      int endExclusive)Returns a sequential  LongStreamwith the specified range of the
 specified array as its source. | 
| static <T> Stream<T> | stream(T[] array)Returns a sequential  Streamwith the specified array as its
 source. | 
| static <T> Stream<T> | stream(T[] array,
      int startInclusive,
      int endExclusive)Returns a sequential  Streamwith the specified range of the
 specified array as its source. | 
| static String | toString(boolean[] a)Returns a string representation of the contents of the specified array. | 
| static String | toString(byte[] a)Returns a string representation of the contents of the specified array. | 
| static String | toString(char[] a)Returns a string representation of the contents of the specified array. | 
| static String | toString(double[] a)Returns a string representation of the contents of the specified array. | 
| static String | toString(float[] a)Returns a string representation of the contents of the specified array. | 
| static String | toString(int[] a)Returns a string representation of the contents of the specified array. | 
| static String | toString(long[] a)Returns a string representation of the contents of the specified array. | 
| static String | toString(Object[] a)Returns a string representation of the contents of the specified array. | 
| static String | toString(short[] a)Returns a string representation of the contents of the specified array. | 
public static void sort(int[] a)
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedpublic static void sort(int[] a,
                        int fromIndex,
                        int toIndex)
fromIndex, inclusive, to
 the index toIndex, exclusive. If fromIndex == toIndex,
 the range to be sorted is empty.
 Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void sort(long[] a)
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedpublic static void sort(long[] a,
                        int fromIndex,
                        int toIndex)
fromIndex, inclusive, to
 the index toIndex, exclusive. If fromIndex == toIndex,
 the range to be sorted is empty.
 Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void sort(short[] a)
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedpublic static void sort(short[] a,
                        int fromIndex,
                        int toIndex)
fromIndex, inclusive, to
 the index toIndex, exclusive. If fromIndex == toIndex,
 the range to be sorted is empty.
 Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void sort(char[] a)
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedpublic static void sort(char[] a,
                        int fromIndex,
                        int toIndex)
fromIndex, inclusive, to
 the index toIndex, exclusive. If fromIndex == toIndex,
 the range to be sorted is empty.
 Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void sort(byte[] a)
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedpublic static void sort(byte[] a,
                        int fromIndex,
                        int toIndex)
fromIndex, inclusive, to
 the index toIndex, exclusive. If fromIndex == toIndex,
 the range to be sorted is empty.
 Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void sort(float[] a)
The < relation does not provide a total order on all float
 values: -0.0f == 0.0f is true and a Float.NaN
 value compares neither less than, greater than, nor equal to any value,
 even itself. This method uses the total order imposed by the method
 Float.compareTo(java.lang.Float): -0.0f is treated as less than value
 0.0f and Float.NaN is considered greater than any
 other value and all Float.NaN values are considered equal.
 
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedpublic static void sort(float[] a,
                        int fromIndex,
                        int toIndex)
fromIndex, inclusive, to
 the index toIndex, exclusive. If fromIndex == toIndex,
 the range to be sorted is empty.
 The < relation does not provide a total order on all float
 values: -0.0f == 0.0f is true and a Float.NaN
 value compares neither less than, greater than, nor equal to any value,
 even itself. This method uses the total order imposed by the method
 Float.compareTo(java.lang.Float): -0.0f is treated as less than value
 0.0f and Float.NaN is considered greater than any
 other value and all Float.NaN values are considered equal.
 
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void sort(double[] a)
The < relation does not provide a total order on all double
 values: -0.0d == 0.0d is true and a Double.NaN
 value compares neither less than, greater than, nor equal to any value,
 even itself. This method uses the total order imposed by the method
 Double.compareTo(java.lang.Double): -0.0d is treated as less than value
 0.0d and Double.NaN is considered greater than any
 other value and all Double.NaN values are considered equal.
 
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedpublic static void sort(double[] a,
                        int fromIndex,
                        int toIndex)
fromIndex, inclusive, to
 the index toIndex, exclusive. If fromIndex == toIndex,
 the range to be sorted is empty.
 The < relation does not provide a total order on all double
 values: -0.0d == 0.0d is true and a Double.NaN
 value compares neither less than, greater than, nor equal to any value,
 even itself. This method uses the total order imposed by the method
 Double.compareTo(java.lang.Double): -0.0d is treated as less than value
 0.0d and Double.NaN is considered greater than any
 other value and all Double.NaN values are considered equal.
 
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void parallelSort(byte[] a)
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a
 working space no greater than the size of the original array. The
 ForkJoin common pool is used to
 execute any parallel tasks.a - the array to be sortedpublic static void parallelSort(byte[] a,
                                int fromIndex,
                                int toIndex)
fromIndex,
 inclusive, to the index toIndex, exclusive. If
 fromIndex == toIndex, the range to be sorted is empty.Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a working
 space no greater than the size of the specified range of the original
 array. The ForkJoin common pool is
 used to execute any parallel tasks.a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void parallelSort(char[] a)
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a
 working space no greater than the size of the original array. The
 ForkJoin common pool is used to
 execute any parallel tasks.a - the array to be sortedpublic static void parallelSort(char[] a,
                                int fromIndex,
                                int toIndex)
fromIndex,
 inclusive, to the index toIndex, exclusive. If
 fromIndex == toIndex, the range to be sorted is empty.Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a working
 space no greater than the size of the specified range of the original
 array. The ForkJoin common pool is
 used to execute any parallel tasks.a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void parallelSort(short[] a)
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a
 working space no greater than the size of the original array. The
 ForkJoin common pool is used to
 execute any parallel tasks.a - the array to be sortedpublic static void parallelSort(short[] a,
                                int fromIndex,
                                int toIndex)
fromIndex,
 inclusive, to the index toIndex, exclusive. If
 fromIndex == toIndex, the range to be sorted is empty.Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a working
 space no greater than the size of the specified range of the original
 array. The ForkJoin common pool is
 used to execute any parallel tasks.a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void parallelSort(int[] a)
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a
 working space no greater than the size of the original array. The
 ForkJoin common pool is used to
 execute any parallel tasks.a - the array to be sortedpublic static void parallelSort(int[] a,
                                int fromIndex,
                                int toIndex)
fromIndex,
 inclusive, to the index toIndex, exclusive. If
 fromIndex == toIndex, the range to be sorted is empty.Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a working
 space no greater than the size of the specified range of the original
 array. The ForkJoin common pool is
 used to execute any parallel tasks.a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void parallelSort(long[] a)
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a
 working space no greater than the size of the original array. The
 ForkJoin common pool is used to
 execute any parallel tasks.a - the array to be sortedpublic static void parallelSort(long[] a,
                                int fromIndex,
                                int toIndex)
fromIndex,
 inclusive, to the index toIndex, exclusive. If
 fromIndex == toIndex, the range to be sorted is empty.Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a working
 space no greater than the size of the specified range of the original
 array. The ForkJoin common pool is
 used to execute any parallel tasks.a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void parallelSort(float[] a)
The < relation does not provide a total order on all float
 values: -0.0f == 0.0f is true and a Float.NaN
 value compares neither less than, greater than, nor equal to any value,
 even itself. This method uses the total order imposed by the method
 Float.compareTo(java.lang.Float): -0.0f is treated as less than value
 0.0f and Float.NaN is considered greater than any
 other value and all Float.NaN values are considered equal.
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a
 working space no greater than the size of the original array. The
 ForkJoin common pool is used to
 execute any parallel tasks.a - the array to be sortedpublic static void parallelSort(float[] a,
                                int fromIndex,
                                int toIndex)
fromIndex,
 inclusive, to the index toIndex, exclusive. If
 fromIndex == toIndex, the range to be sorted is empty.
 The < relation does not provide a total order on all float
 values: -0.0f == 0.0f is true and a Float.NaN
 value compares neither less than, greater than, nor equal to any value,
 even itself. This method uses the total order imposed by the method
 Float.compareTo(java.lang.Float): -0.0f is treated as less than value
 0.0f and Float.NaN is considered greater than any
 other value and all Float.NaN values are considered equal.
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a working
 space no greater than the size of the specified range of the original
 array. The ForkJoin common pool is
 used to execute any parallel tasks.a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static void parallelSort(double[] a)
The < relation does not provide a total order on all double
 values: -0.0d == 0.0d is true and a Double.NaN
 value compares neither less than, greater than, nor equal to any value,
 even itself. This method uses the total order imposed by the method
 Double.compareTo(java.lang.Double): -0.0d is treated as less than value
 0.0d and Double.NaN is considered greater than any
 other value and all Double.NaN values are considered equal.
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a
 working space no greater than the size of the original array. The
 ForkJoin common pool is used to
 execute any parallel tasks.a - the array to be sortedpublic static void parallelSort(double[] a,
                                int fromIndex,
                                int toIndex)
fromIndex,
 inclusive, to the index toIndex, exclusive. If
 fromIndex == toIndex, the range to be sorted is empty.
 The < relation does not provide a total order on all double
 values: -0.0d == 0.0d is true and a Double.NaN
 value compares neither less than, greater than, nor equal to any value,
 even itself. This method uses the total order imposed by the method
 Double.compareTo(java.lang.Double): -0.0d is treated as less than value
 0.0d and Double.NaN is considered greater than any
 other value and all Double.NaN values are considered equal.
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a working
 space no greater than the size of the specified range of the original
 array. The ForkJoin common pool is
 used to execute any parallel tasks.a - the array to be sortedfromIndex - the index of the first element, inclusive, to be sortedtoIndex - the index of the last element, exclusive, to be sortedIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static <T extends Comparable<? super T>> void parallelSort(T[] a)
Comparable
 interface.  Furthermore, all elements in the array must be
 mutually comparable (that is, e1.compareTo(e2) must
 not throw a ClassCastException for any elements e1
 and e2 in the array).
 This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a
 working space no greater than the size of the original array. The
 ForkJoin common pool is used to
 execute any parallel tasks.T - the class of the objects to be sorteda - the array to be sortedClassCastException - if the array contains elements that are not
         mutually comparable (for example, strings and integers)IllegalArgumentException - (optional) if the natural
         ordering of the array elements is found to violate the
         Comparable contractpublic static <T extends Comparable<? super T>> void parallelSort(T[] a, int fromIndex, int toIndex)
fromIndex, inclusive, to index toIndex, exclusive.
 (If fromIndex==toIndex, the range to be sorted is empty.)  All
 elements in this range must implement the Comparable
 interface.  Furthermore, all elements in this range must be mutually
 comparable (that is, e1.compareTo(e2) must not throw a
 ClassCastException for any elements e1 and
 e2 in the array).
 This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a working
 space no greater than the size of the specified range of the original
 array. The ForkJoin common pool is
 used to execute any parallel tasks.T - the class of the objects to be sorteda - the array to be sortedfromIndex - the index of the first element (inclusive) to be
        sortedtoIndex - the index of the last element (exclusive) to be sortedIllegalArgumentException - if fromIndex > toIndex or
         (optional) if the natural ordering of the array elements is
         found to violate the Comparable contractArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthClassCastException - if the array contains elements that are
         not mutually comparable (for example, strings and
         integers).public static <T> void parallelSort(T[] a,
                                    Comparator<? super T> cmp)
c.compare(e1, e2) must not throw a ClassCastException
 for any elements e1 and e2 in the array).
 This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a
 working space no greater than the size of the original array. The
 ForkJoin common pool is used to
 execute any parallel tasks.T - the class of the objects to be sorteda - the array to be sortedcmp - the comparator to determine the order of the array.  A
        null value indicates that the elements'
        natural ordering should be used.ClassCastException - if the array contains elements that are
         not mutually comparable using the specified comparatorIllegalArgumentException - (optional) if the comparator is
         found to violate the Comparator contractpublic static <T> void parallelSort(T[] a,
                                    int fromIndex,
                                    int toIndex,
                                    Comparator<? super T> cmp)
fromIndex, inclusive, to index
 toIndex, exclusive.  (If fromIndex==toIndex, the
 range to be sorted is empty.)  All elements in the range must be
 mutually comparable by the specified comparator (that is,
 c.compare(e1, e2) must not throw a ClassCastException
 for any elements e1 and e2 in the range).
 This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Arrays.sort
 method. If the length of the specified array is less than the minimum
 granularity, then it is sorted using the appropriate Arrays.sort method. The algorithm requires a working
 space no greater than the size of the specified range of the original
 array. The ForkJoin common pool is
 used to execute any parallel tasks.T - the class of the objects to be sorteda - the array to be sortedfromIndex - the index of the first element (inclusive) to be
        sortedtoIndex - the index of the last element (exclusive) to be sortedcmp - the comparator to determine the order of the array.  A
        null value indicates that the elements'
        natural ordering should be used.IllegalArgumentException - if fromIndex > toIndex or
         (optional) if the natural ordering of the array elements is
         found to violate the Comparable contractArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthClassCastException - if the array contains elements that are
         not mutually comparable (for example, strings and
         integers).public static void sort(Object[] a)
Comparable
 interface.  Furthermore, all elements in the array must be
 mutually comparable (that is, e1.compareTo(e2) must
 not throw a ClassCastException for any elements e1
 and e2 in the array).
 This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Implementation note: This implementation is a stable, adaptive, iterative mergesort that requires far fewer than n lg(n) comparisons when the input array is partially sorted, while offering the performance of a traditional mergesort when the input array is randomly ordered. If the input array is nearly sorted, the implementation requires approximately n comparisons. Temporary storage requirements vary from a small constant for nearly sorted input arrays to n/2 object references for randomly ordered input arrays.
The implementation takes equal advantage of ascending and descending order in its input array, and can take advantage of ascending and descending order in different parts of the the same input array. It is well-suited to merging two or more sorted arrays: simply concatenate the arrays and sort the resulting array.
The implementation was adapted from Tim Peters's list sort for Python ( TimSort). It uses techniques from Peter McIlroy's "Optimistic Sorting and Information Theoretic Complexity", in Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, January 1993.
a - the array to be sortedClassCastException - if the array contains elements that are not
         mutually comparable (for example, strings and integers)IllegalArgumentException - (optional) if the natural
         ordering of the array elements is found to violate the
         Comparable contractpublic static void sort(Object[] a, int fromIndex, int toIndex)
fromIndex, inclusive, to index toIndex, exclusive.
 (If fromIndex==toIndex, the range to be sorted is empty.)  All
 elements in this range must implement the Comparable
 interface.  Furthermore, all elements in this range must be mutually
 comparable (that is, e1.compareTo(e2) must not throw a
 ClassCastException for any elements e1 and
 e2 in the array).
 This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Implementation note: This implementation is a stable, adaptive, iterative mergesort that requires far fewer than n lg(n) comparisons when the input array is partially sorted, while offering the performance of a traditional mergesort when the input array is randomly ordered. If the input array is nearly sorted, the implementation requires approximately n comparisons. Temporary storage requirements vary from a small constant for nearly sorted input arrays to n/2 object references for randomly ordered input arrays.
The implementation takes equal advantage of ascending and descending order in its input array, and can take advantage of ascending and descending order in different parts of the the same input array. It is well-suited to merging two or more sorted arrays: simply concatenate the arrays and sort the resulting array.
The implementation was adapted from Tim Peters's list sort for Python ( TimSort). It uses techniques from Peter McIlroy's "Optimistic Sorting and Information Theoretic Complexity", in Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, January 1993.
a - the array to be sortedfromIndex - the index of the first element (inclusive) to be
        sortedtoIndex - the index of the last element (exclusive) to be sortedIllegalArgumentException - if fromIndex > toIndex or
         (optional) if the natural ordering of the array elements is
         found to violate the Comparable contractArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthClassCastException - if the array contains elements that are
         not mutually comparable (for example, strings and
         integers).public static <T> void sort(T[] a,
                            Comparator<? super T> c)
c.compare(e1, e2) must not throw a ClassCastException
 for any elements e1 and e2 in the array).
 This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Implementation note: This implementation is a stable, adaptive, iterative mergesort that requires far fewer than n lg(n) comparisons when the input array is partially sorted, while offering the performance of a traditional mergesort when the input array is randomly ordered. If the input array is nearly sorted, the implementation requires approximately n comparisons. Temporary storage requirements vary from a small constant for nearly sorted input arrays to n/2 object references for randomly ordered input arrays.
The implementation takes equal advantage of ascending and descending order in its input array, and can take advantage of ascending and descending order in different parts of the the same input array. It is well-suited to merging two or more sorted arrays: simply concatenate the arrays and sort the resulting array.
The implementation was adapted from Tim Peters's list sort for Python ( TimSort). It uses techniques from Peter McIlroy's "Optimistic Sorting and Information Theoretic Complexity", in Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, January 1993.
T - the class of the objects to be sorteda - the array to be sortedc - the comparator to determine the order of the array.  A
        null value indicates that the elements'
        natural ordering should be used.ClassCastException - if the array contains elements that are
         not mutually comparable using the specified comparatorIllegalArgumentException - (optional) if the comparator is
         found to violate the Comparator contractpublic static <T> void sort(T[] a,
                            int fromIndex,
                            int toIndex,
                            Comparator<? super T> c)
fromIndex, inclusive, to index
 toIndex, exclusive.  (If fromIndex==toIndex, the
 range to be sorted is empty.)  All elements in the range must be
 mutually comparable by the specified comparator (that is,
 c.compare(e1, e2) must not throw a ClassCastException
 for any elements e1 and e2 in the range).
 This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Implementation note: This implementation is a stable, adaptive, iterative mergesort that requires far fewer than n lg(n) comparisons when the input array is partially sorted, while offering the performance of a traditional mergesort when the input array is randomly ordered. If the input array is nearly sorted, the implementation requires approximately n comparisons. Temporary storage requirements vary from a small constant for nearly sorted input arrays to n/2 object references for randomly ordered input arrays.
The implementation takes equal advantage of ascending and descending order in its input array, and can take advantage of ascending and descending order in different parts of the the same input array. It is well-suited to merging two or more sorted arrays: simply concatenate the arrays and sort the resulting array.
The implementation was adapted from Tim Peters's list sort for Python ( TimSort). It uses techniques from Peter McIlroy's "Optimistic Sorting and Information Theoretic Complexity", in Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, January 1993.
T - the class of the objects to be sorteda - the array to be sortedfromIndex - the index of the first element (inclusive) to be
        sortedtoIndex - the index of the last element (exclusive) to be sortedc - the comparator to determine the order of the array.  A
        null value indicates that the elements'
        natural ordering should be used.ClassCastException - if the array contains elements that are not
         mutually comparable using the specified comparator.IllegalArgumentException - if fromIndex > toIndex or
         (optional) if the comparator is found to violate the
         Comparator contractArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthpublic static <T> void parallelPrefix(T[] array,
                                      BinaryOperator<T> op)
[2, 1, 0, 3] and the operation performs addition,
 then upon return the array holds [2, 3, 3, 6].
 Parallel prefix computation is usually more efficient than
 sequential loops for large arrays.T - the class of the objects in the arrayarray - the array, which is modified in-place by this methodop - a side-effect-free, associative function to perform the
 cumulationNullPointerException - if the specified array or function is nullpublic static <T> void parallelPrefix(T[] array,
                                      int fromIndex,
                                      int toIndex,
                                      BinaryOperator<T> op)
parallelPrefix(Object[], BinaryOperator)
 for the given subrange of the array.T - the class of the objects in the arrayarray - the arrayfromIndex - the index of the first element, inclusivetoIndex - the index of the last element, exclusiveop - a side-effect-free, associative function to perform the
 cumulationIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > array.lengthNullPointerException - if the specified array or function is nullpublic static void parallelPrefix(long[] array,
                                  LongBinaryOperator op)
[2, 1, 0, 3] and the operation performs addition,
 then upon return the array holds [2, 3, 3, 6].
 Parallel prefix computation is usually more efficient than
 sequential loops for large arrays.array - the array, which is modified in-place by this methodop - a side-effect-free, associative function to perform the
 cumulationNullPointerException - if the specified array or function is nullpublic static void parallelPrefix(long[] array,
                                  int fromIndex,
                                  int toIndex,
                                  LongBinaryOperator op)
parallelPrefix(long[], LongBinaryOperator)
 for the given subrange of the array.array - the arrayfromIndex - the index of the first element, inclusivetoIndex - the index of the last element, exclusiveop - a side-effect-free, associative function to perform the
 cumulationIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > array.lengthNullPointerException - if the specified array or function is nullpublic static void parallelPrefix(double[] array,
                                  DoubleBinaryOperator op)
[2.0, 1.0, 0.0, 3.0] and the operation performs addition,
 then upon return the array holds [2.0, 3.0, 3.0, 6.0].
 Parallel prefix computation is usually more efficient than
 sequential loops for large arrays.
 Because floating-point operations may not be strictly associative, the returned result may not be identical to the value that would be obtained if the operation was performed sequentially.
array - the array, which is modified in-place by this methodop - a side-effect-free function to perform the cumulationNullPointerException - if the specified array or function is nullpublic static void parallelPrefix(double[] array,
                                  int fromIndex,
                                  int toIndex,
                                  DoubleBinaryOperator op)
parallelPrefix(double[], DoubleBinaryOperator)
 for the given subrange of the array.array - the arrayfromIndex - the index of the first element, inclusivetoIndex - the index of the last element, exclusiveop - a side-effect-free, associative function to perform the
 cumulationIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > array.lengthNullPointerException - if the specified array or function is nullpublic static void parallelPrefix(int[] array,
                                  IntBinaryOperator op)
[2, 1, 0, 3] and the operation performs addition,
 then upon return the array holds [2, 3, 3, 6].
 Parallel prefix computation is usually more efficient than
 sequential loops for large arrays.array - the array, which is modified in-place by this methodop - a side-effect-free, associative function to perform the
 cumulationNullPointerException - if the specified array or function is nullpublic static void parallelPrefix(int[] array,
                                  int fromIndex,
                                  int toIndex,
                                  IntBinaryOperator op)
parallelPrefix(int[], IntBinaryOperator)
 for the given subrange of the array.array - the arrayfromIndex - the index of the first element, inclusivetoIndex - the index of the last element, exclusiveop - a side-effect-free, associative function to perform the
 cumulationIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > array.lengthNullPointerException - if the specified array or function is nullpublic static int binarySearch(long[] a,
                               long key)
sort(long[]) method) prior to making this call.  If it
 is not sorted, the results are undefined.  If the array contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.a - the array to be searchedkey - the value to be searched forpublic static int binarySearch(long[] a,
                               int fromIndex,
                               int toIndex,
                               long key)
sort(long[], int, int) method)
 prior to making this call.  If it
 is not sorted, the results are undefined.  If the range contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.a - the array to be searchedfromIndex - the index of the first element (inclusive) to be
          searchedtoIndex - the index of the last element (exclusive) to be searchedkey - the value to be searched forIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static int binarySearch(int[] a,
                               int key)
sort(int[]) method) prior to making this call.  If it
 is not sorted, the results are undefined.  If the array contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.a - the array to be searchedkey - the value to be searched forpublic static int binarySearch(int[] a,
                               int fromIndex,
                               int toIndex,
                               int key)
sort(int[], int, int) method)
 prior to making this call.  If it
 is not sorted, the results are undefined.  If the range contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.a - the array to be searchedfromIndex - the index of the first element (inclusive) to be
          searchedtoIndex - the index of the last element (exclusive) to be searchedkey - the value to be searched forIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static int binarySearch(short[] a,
                               short key)
sort(short[]) method) prior to making this call.  If
 it is not sorted, the results are undefined.  If the array contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.a - the array to be searchedkey - the value to be searched forpublic static int binarySearch(short[] a,
                               int fromIndex,
                               int toIndex,
                               short key)
sort(short[], int, int) method)
 prior to making this call.  If
 it is not sorted, the results are undefined.  If the range contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.a - the array to be searchedfromIndex - the index of the first element (inclusive) to be
          searchedtoIndex - the index of the last element (exclusive) to be searchedkey - the value to be searched forIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static int binarySearch(char[] a,
                               char key)
sort(char[]) method) prior to making this call.  If it
 is not sorted, the results are undefined.  If the array contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.a - the array to be searchedkey - the value to be searched forpublic static int binarySearch(char[] a,
                               int fromIndex,
                               int toIndex,
                               char key)
sort(char[], int, int) method)
 prior to making this call.  If it
 is not sorted, the results are undefined.  If the range contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.a - the array to be searchedfromIndex - the index of the first element (inclusive) to be
          searchedtoIndex - the index of the last element (exclusive) to be searchedkey - the value to be searched forIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static int binarySearch(byte[] a,
                               byte key)
sort(byte[]) method) prior to making this call.  If it
 is not sorted, the results are undefined.  If the array contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.a - the array to be searchedkey - the value to be searched forpublic static int binarySearch(byte[] a,
                               int fromIndex,
                               int toIndex,
                               byte key)
sort(byte[], int, int) method)
 prior to making this call.  If it
 is not sorted, the results are undefined.  If the range contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.a - the array to be searchedfromIndex - the index of the first element (inclusive) to be
          searchedtoIndex - the index of the last element (exclusive) to be searchedkey - the value to be searched forIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static int binarySearch(double[] a,
                               double key)
sort(double[]) method) prior to making this call.
 If it is not sorted, the results are undefined.  If the array contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.  This method considers all NaN values to be
 equivalent and equal.a - the array to be searchedkey - the value to be searched forpublic static int binarySearch(double[] a,
                               int fromIndex,
                               int toIndex,
                               double key)
sort(double[], int, int) method)
 prior to making this call.
 If it is not sorted, the results are undefined.  If the range contains
 multiple elements with the specified value, there is no guarantee which
 one will be found.  This method considers all NaN values to be
 equivalent and equal.a - the array to be searchedfromIndex - the index of the first element (inclusive) to be
          searchedtoIndex - the index of the last element (exclusive) to be searchedkey - the value to be searched forIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static int binarySearch(float[] a,
                               float key)
sort(float[]) method) prior to making this call. If
 it is not sorted, the results are undefined. If the array contains
 multiple elements with the specified value, there is no guarantee which
 one will be found. This method considers all NaN values to be
 equivalent and equal.a - the array to be searchedkey - the value to be searched forpublic static int binarySearch(float[] a,
                               int fromIndex,
                               int toIndex,
                               float key)
sort(float[], int, int) method)
 prior to making this call. If
 it is not sorted, the results are undefined. If the range contains
 multiple elements with the specified value, there is no guarantee which
 one will be found. This method considers all NaN values to be
 equivalent and equal.a - the array to be searchedfromIndex - the index of the first element (inclusive) to be
          searchedtoIndex - the index of the last element (exclusive) to be searchedkey - the value to be searched forIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static int binarySearch(Object[] a, Object key)
sort(Object[]) method) prior to making this call.
 If it is not sorted, the results are undefined.
 (If the array contains elements that are not mutually comparable (for
 example, strings and integers), it cannot be sorted according
 to the natural ordering of its elements, hence results are undefined.)
 If the array contains multiple
 elements equal to the specified object, there is no guarantee which
 one will be found.a - the array to be searchedkey - the value to be searched forClassCastException - if the search key is not comparable to the
         elements of the array.public static int binarySearch(Object[] a, int fromIndex, int toIndex, Object key)
sort(Object[], int, int) method) prior to making this
 call.  If it is not sorted, the results are undefined.
 (If the range contains elements that are not mutually comparable (for
 example, strings and integers), it cannot be sorted according
 to the natural ordering of its elements, hence results are undefined.)
 If the range contains multiple
 elements equal to the specified object, there is no guarantee which
 one will be found.a - the array to be searchedfromIndex - the index of the first element (inclusive) to be
          searchedtoIndex - the index of the last element (exclusive) to be searchedkey - the value to be searched forClassCastException - if the search key is not comparable to the
         elements of the array within the specified range.IllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static <T> int binarySearch(T[] a,
                                   T key,
                                   Comparator<? super T> c)
sort(T[], Comparator)
 method) prior to making this call.  If it is
 not sorted, the results are undefined.
 If the array contains multiple
 elements equal to the specified object, there is no guarantee which one
 will be found.T - the class of the objects in the arraya - the array to be searchedkey - the value to be searched forc - the comparator by which the array is ordered.  A
        null value indicates that the elements'
        natural ordering should be used.ClassCastException - if the array contains elements that are not
         mutually comparable using the specified comparator,
         or the search key is not comparable to the
         elements of the array using this comparator.public static <T> int binarySearch(T[] a,
                                   int fromIndex,
                                   int toIndex,
                                   T key,
                                   Comparator<? super T> c)
sort(T[], int, int, Comparator)
 method) prior to making this call.
 If it is not sorted, the results are undefined.
 If the range contains multiple elements equal to the specified object,
 there is no guarantee which one will be found.T - the class of the objects in the arraya - the array to be searchedfromIndex - the index of the first element (inclusive) to be
          searchedtoIndex - the index of the last element (exclusive) to be searchedkey - the value to be searched forc - the comparator by which the array is ordered.  A
        null value indicates that the elements'
        natural ordering should be used.ClassCastException - if the range contains elements that are not
         mutually comparable using the specified comparator,
         or the search key is not comparable to the
         elements in the range using this comparator.IllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or toIndex > a.lengthpublic static boolean equals(long[] a,
                             long[] a2)
a - one array to be tested for equalitya2 - the other array to be tested for equalitypublic static boolean equals(int[] a,
                             int[] a2)
a - one array to be tested for equalitya2 - the other array to be tested for equalitypublic static boolean equals(short[] a,
                             short[] a2)
a - one array to be tested for equalitya2 - the other array to be tested for equalitypublic static boolean equals(char[] a,
                             char[] a2)
a - one array to be tested for equalitya2 - the other array to be tested for equalitypublic static boolean equals(byte[] a,
                             byte[] a2)
a - one array to be tested for equalitya2 - the other array to be tested for equalitypublic static boolean equals(boolean[] a,
                             boolean[] a2)
a - one array to be tested for equalitya2 - the other array to be tested for equalitypublic static boolean equals(double[] a,
                             double[] a2)
Two doubles d1 and d2 are considered equal if:
new Double(d1).equals(new Double(d2))(Unlike the == operator, this method considers NaN equals to itself, and 0.0d unequal to -0.0d.)
a - one array to be tested for equalitya2 - the other array to be tested for equalityDouble.equals(Object)public static boolean equals(float[] a,
                             float[] a2)
Two floats f1 and f2 are considered equal if:
new Float(f1).equals(new Float(f2))(Unlike the == operator, this method considers NaN equals to itself, and 0.0f unequal to -0.0f.)
a - one array to be tested for equalitya2 - the other array to be tested for equalityFloat.equals(Object)public static boolean equals(Object[] a, Object[] a2)
a - one array to be tested for equalitya2 - the other array to be tested for equalitypublic static void fill(long[] a,
                        long val)
a - the array to be filledval - the value to be stored in all elements of the arraypublic static void fill(long[] a,
                        int fromIndex,
                        int toIndex,
                        long val)
a - the array to be filledfromIndex - the index of the first element (inclusive) to be
        filled with the specified valuetoIndex - the index of the last element (exclusive) to be
        filled with the specified valueval - the value to be stored in all elements of the arrayIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthpublic static void fill(int[] a,
                        int val)
a - the array to be filledval - the value to be stored in all elements of the arraypublic static void fill(int[] a,
                        int fromIndex,
                        int toIndex,
                        int val)
a - the array to be filledfromIndex - the index of the first element (inclusive) to be
        filled with the specified valuetoIndex - the index of the last element (exclusive) to be
        filled with the specified valueval - the value to be stored in all elements of the arrayIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthpublic static void fill(short[] a,
                        short val)
a - the array to be filledval - the value to be stored in all elements of the arraypublic static void fill(short[] a,
                        int fromIndex,
                        int toIndex,
                        short val)
a - the array to be filledfromIndex - the index of the first element (inclusive) to be
        filled with the specified valuetoIndex - the index of the last element (exclusive) to be
        filled with the specified valueval - the value to be stored in all elements of the arrayIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthpublic static void fill(char[] a,
                        char val)
a - the array to be filledval - the value to be stored in all elements of the arraypublic static void fill(char[] a,
                        int fromIndex,
                        int toIndex,
                        char val)
a - the array to be filledfromIndex - the index of the first element (inclusive) to be
        filled with the specified valuetoIndex - the index of the last element (exclusive) to be
        filled with the specified valueval - the value to be stored in all elements of the arrayIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthpublic static void fill(byte[] a,
                        byte val)
a - the array to be filledval - the value to be stored in all elements of the arraypublic static void fill(byte[] a,
                        int fromIndex,
                        int toIndex,
                        byte val)
a - the array to be filledfromIndex - the index of the first element (inclusive) to be
        filled with the specified valuetoIndex - the index of the last element (exclusive) to be
        filled with the specified valueval - the value to be stored in all elements of the arrayIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthpublic static void fill(boolean[] a,
                        boolean val)
a - the array to be filledval - the value to be stored in all elements of the arraypublic static void fill(boolean[] a,
                        int fromIndex,
                        int toIndex,
                        boolean val)
a - the array to be filledfromIndex - the index of the first element (inclusive) to be
        filled with the specified valuetoIndex - the index of the last element (exclusive) to be
        filled with the specified valueval - the value to be stored in all elements of the arrayIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthpublic static void fill(double[] a,
                        double val)
a - the array to be filledval - the value to be stored in all elements of the arraypublic static void fill(double[] a,
                        int fromIndex,
                        int toIndex,
                        double val)
a - the array to be filledfromIndex - the index of the first element (inclusive) to be
        filled with the specified valuetoIndex - the index of the last element (exclusive) to be
        filled with the specified valueval - the value to be stored in all elements of the arrayIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthpublic static void fill(float[] a,
                        float val)
a - the array to be filledval - the value to be stored in all elements of the arraypublic static void fill(float[] a,
                        int fromIndex,
                        int toIndex,
                        float val)
a - the array to be filledfromIndex - the index of the first element (inclusive) to be
        filled with the specified valuetoIndex - the index of the last element (exclusive) to be
        filled with the specified valueval - the value to be stored in all elements of the arrayIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthpublic static void fill(Object[] a, Object val)
a - the array to be filledval - the value to be stored in all elements of the arrayArrayStoreException - if the specified value is not of a
         runtime type that can be stored in the specified arraypublic static void fill(Object[] a, int fromIndex, int toIndex, Object val)
a - the array to be filledfromIndex - the index of the first element (inclusive) to be
        filled with the specified valuetoIndex - the index of the last element (exclusive) to be
        filled with the specified valueval - the value to be stored in all elements of the arrayIllegalArgumentException - if fromIndex > toIndexArrayIndexOutOfBoundsException - if fromIndex < 0 or
         toIndex > a.lengthArrayStoreException - if the specified value is not of a
         runtime type that can be stored in the specified arraypublic static <T> T[] copyOf(T[] original,
                             int newLength)
T - the class of the objects in the arrayoriginal - the array to be copiednewLength - the length of the copy to be returnedNegativeArraySizeException - if newLength is negativeNullPointerException - if original is nullpublic static <T,U> T[] copyOf(U[] original,
                               int newLength,
                               Class<? extends T[]> newType)
U - the class of the objects in the original arrayT - the class of the objects in the returned arrayoriginal - the array to be copiednewLength - the length of the copy to be returnednewType - the class of the copy to be returnedNegativeArraySizeException - if newLength is negativeNullPointerException - if original is nullArrayStoreException - if an element copied from
     original is not of a runtime type that can be stored in
     an array of class newTypepublic static byte[] copyOf(byte[] original,
                            int newLength)
original - the array to be copiednewLength - the length of the copy to be returnedNegativeArraySizeException - if newLength is negativeNullPointerException - if original is nullpublic static short[] copyOf(short[] original,
                             int newLength)
original - the array to be copiednewLength - the length of the copy to be returnedNegativeArraySizeException - if newLength is negativeNullPointerException - if original is nullpublic static int[] copyOf(int[] original,
                           int newLength)
original - the array to be copiednewLength - the length of the copy to be returnedNegativeArraySizeException - if newLength is negativeNullPointerException - if original is nullpublic static long[] copyOf(long[] original,
                            int newLength)
original - the array to be copiednewLength - the length of the copy to be returnedNegativeArraySizeException - if newLength is negativeNullPointerException - if original is nullpublic static char[] copyOf(char[] original,
                            int newLength)
original - the array to be copiednewLength - the length of the copy to be returnedNegativeArraySizeException - if newLength is negativeNullPointerException - if original is nullpublic static float[] copyOf(float[] original,
                             int newLength)
original - the array to be copiednewLength - the length of the copy to be returnedNegativeArraySizeException - if newLength is negativeNullPointerException - if original is nullpublic static double[] copyOf(double[] original,
                              int newLength)
original - the array to be copiednewLength - the length of the copy to be returnedNegativeArraySizeException - if newLength is negativeNullPointerException - if original is nullpublic static boolean[] copyOf(boolean[] original,
                               int newLength)
original - the array to be copiednewLength - the length of the copy to be returnedNegativeArraySizeException - if newLength is negativeNullPointerException - if original is nullpublic static <T> T[] copyOfRange(T[] original,
                                  int from,
                                  int to)
The resulting array is of exactly the same class as the original array.
T - the class of the objects in the arrayoriginal - the array from which a range is to be copiedfrom - the initial index of the range to be copied, inclusiveto - the final index of the range to be copied, exclusive.
     (This index may lie outside the array.)ArrayIndexOutOfBoundsException - if from < 0
     or from > original.lengthIllegalArgumentException - if from > toNullPointerException - if original is nullpublic static <T,U> T[] copyOfRange(U[] original,
                                    int from,
                                    int to,
                                    Class<? extends T[]> newType)
U - the class of the objects in the original arrayT - the class of the objects in the returned arrayoriginal - the array from which a range is to be copiedfrom - the initial index of the range to be copied, inclusiveto - the final index of the range to be copied, exclusive.
     (This index may lie outside the array.)newType - the class of the copy to be returnedArrayIndexOutOfBoundsException - if from < 0
     or from > original.lengthIllegalArgumentException - if from > toNullPointerException - if original is nullArrayStoreException - if an element copied from
     original is not of a runtime type that can be stored in
     an array of class newType.public static byte[] copyOfRange(byte[] original,
                                 int from,
                                 int to)
original - the array from which a range is to be copiedfrom - the initial index of the range to be copied, inclusiveto - the final index of the range to be copied, exclusive.
     (This index may lie outside the array.)ArrayIndexOutOfBoundsException - if from < 0
     or from > original.lengthIllegalArgumentException - if from > toNullPointerException - if original is nullpublic static short[] copyOfRange(short[] original,
                                  int from,
                                  int to)
original - the array from which a range is to be copiedfrom - the initial index of the range to be copied, inclusiveto - the final index of the range to be copied, exclusive.
     (This index may lie outside the array.)ArrayIndexOutOfBoundsException - if from < 0
     or from > original.lengthIllegalArgumentException - if from > toNullPointerException - if original is nullpublic static int[] copyOfRange(int[] original,
                                int from,
                                int to)
original - the array from which a range is to be copiedfrom - the initial index of the range to be copied, inclusiveto - the final index of the range to be copied, exclusive.
     (This index may lie outside the array.)ArrayIndexOutOfBoundsException - if from < 0
     or from > original.lengthIllegalArgumentException - if from > toNullPointerException - if original is nullpublic static long[] copyOfRange(long[] original,
                                 int from,
                                 int to)
original - the array from which a range is to be copiedfrom - the initial index of the range to be copied, inclusiveto - the final index of the range to be copied, exclusive.
     (This index may lie outside the array.)ArrayIndexOutOfBoundsException - if from < 0
     or from > original.lengthIllegalArgumentException - if from > toNullPointerException - if original is nullpublic static char[] copyOfRange(char[] original,
                                 int from,
                                 int to)
original - the array from which a range is to be copiedfrom - the initial index of the range to be copied, inclusiveto - the final index of the range to be copied, exclusive.
     (This index may lie outside the array.)ArrayIndexOutOfBoundsException - if from < 0
     or from > original.lengthIllegalArgumentException - if from > toNullPointerException - if original is nullpublic static float[] copyOfRange(float[] original,
                                  int from,
                                  int to)
original - the array from which a range is to be copiedfrom - the initial index of the range to be copied, inclusiveto - the final index of the range to be copied, exclusive.
     (This index may lie outside the array.)ArrayIndexOutOfBoundsException - if from < 0
     or from > original.lengthIllegalArgumentException - if from > toNullPointerException - if original is nullpublic static double[] copyOfRange(double[] original,
                                   int from,
                                   int to)
original - the array from which a range is to be copiedfrom - the initial index of the range to be copied, inclusiveto - the final index of the range to be copied, exclusive.
     (This index may lie outside the array.)ArrayIndexOutOfBoundsException - if from < 0
     or from > original.lengthIllegalArgumentException - if from > toNullPointerException - if original is nullpublic static boolean[] copyOfRange(boolean[] original,
                                    int from,
                                    int to)
original - the array from which a range is to be copiedfrom - the initial index of the range to be copied, inclusiveto - the final index of the range to be copied, exclusive.
     (This index may lie outside the array.)ArrayIndexOutOfBoundsException - if from < 0
     or from > original.lengthIllegalArgumentException - if from > toNullPointerException - if original is null@SafeVarargs public static <T> List<T> asList(T... a)
Collection.toArray().  The returned list is
 serializable and implements RandomAccess.
 This method also provides a convenient way to create a fixed-size list initialized to contain several elements:
     List<String> stooges = Arrays.asList("Larry", "Moe", "Curly");
 T - the class of the objects in the arraya - the array by which the list will be backedpublic static int hashCode(long[] a)
The value returned by this method is the same value that would be
 obtained by invoking the hashCode
 method on a List containing a sequence of Long
 instances representing the elements of a in the same order.
 If a is null, this method returns 0.
a - the array whose hash value to computepublic static int hashCode(int[] a)
The value returned by this method is the same value that would be
 obtained by invoking the hashCode
 method on a List containing a sequence of Integer
 instances representing the elements of a in the same order.
 If a is null, this method returns 0.
a - the array whose hash value to computepublic static int hashCode(short[] a)
The value returned by this method is the same value that would be
 obtained by invoking the hashCode
 method on a List containing a sequence of Short
 instances representing the elements of a in the same order.
 If a is null, this method returns 0.
a - the array whose hash value to computepublic static int hashCode(char[] a)
The value returned by this method is the same value that would be
 obtained by invoking the hashCode
 method on a List containing a sequence of Character
 instances representing the elements of a in the same order.
 If a is null, this method returns 0.
a - the array whose hash value to computepublic static int hashCode(byte[] a)
The value returned by this method is the same value that would be
 obtained by invoking the hashCode
 method on a List containing a sequence of Byte
 instances representing the elements of a in the same order.
 If a is null, this method returns 0.
a - the array whose hash value to computepublic static int hashCode(boolean[] a)
The value returned by this method is the same value that would be
 obtained by invoking the hashCode
 method on a List containing a sequence of Boolean
 instances representing the elements of a in the same order.
 If a is null, this method returns 0.
a - the array whose hash value to computepublic static int hashCode(float[] a)
The value returned by this method is the same value that would be
 obtained by invoking the hashCode
 method on a List containing a sequence of Float
 instances representing the elements of a in the same order.
 If a is null, this method returns 0.
a - the array whose hash value to computepublic static int hashCode(double[] a)
The value returned by this method is the same value that would be
 obtained by invoking the hashCode
 method on a List containing a sequence of Double
 instances representing the elements of a in the same order.
 If a is null, this method returns 0.
a - the array whose hash value to computepublic static int hashCode(Object[] a)
For any two arrays a and b such that Arrays.equals(a, b), it is also the case that Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is equal to the value that would be returned by Arrays.asList(a).hashCode(), unless a is null, in which case 0 is returned.
a - the array whose content-based hash code to computedeepHashCode(Object[])public static int deepHashCode(Object[] a)
For any two arrays a and b such that Arrays.deepEquals(a, b), it is also the case that Arrays.deepHashCode(a) == Arrays.deepHashCode(b).
The computation of the value returned by this method is similar to
 that of the value returned by List.hashCode() on a list
 containing the same elements as a in the same order, with one
 difference: If an element e of a is itself an array,
 its hash code is computed not by calling e.hashCode(), but as
 by calling the appropriate overloading of Arrays.hashCode(e)
 if e is an array of a primitive type, or as by calling
 Arrays.deepHashCode(e) recursively if e is an array
 of a reference type.  If a is null, this method
 returns 0.
a - the array whose deep-content-based hash code to computehashCode(Object[])public static boolean deepEquals(Object[] a1, Object[] a2)
equals(Object[],Object[])
 method, this method is appropriate for use with nested arrays of
 arbitrary depth.
 Two array references are considered deeply equal if both are null, or if they refer to arrays that contain the same number of elements and all corresponding pairs of elements in the two arrays are deeply equal.
Two possibly null elements e1 and e2 are deeply equal if any of the following conditions hold:
If either of the specified arrays contain themselves as elements either directly or indirectly through one or more levels of arrays, the behavior of this method is undefined.
a1 - one array to be tested for equalitya2 - the other array to be tested for equalityequals(Object[],Object[]), 
Objects.deepEquals(Object, Object)public static String toString(long[] a)
a - the array whose string representation to returnpublic static String toString(int[] a)
a - the array whose string representation to returnpublic static String toString(short[] a)
a - the array whose string representation to returnpublic static String toString(char[] a)
a - the array whose string representation to returnpublic static String toString(byte[] a)
a - the array whose string representation to returnpublic static String toString(boolean[] a)
a - the array whose string representation to returnpublic static String toString(float[] a)
a - the array whose string representation to returnpublic static String toString(double[] a)
a - the array whose string representation to returnpublic static String toString(Object[] a)
Object.toString() method inherited from
 Object, which describes their identities rather than
 their contents.
 The value returned by this method is equal to the value that would be returned by Arrays.asList(a).toString(), unless a is null, in which case "null" is returned.
a - the array whose string representation to returndeepToString(Object[])public static String deepToString(Object[] a)
The string representation consists of a list of the array's elements, enclosed in square brackets ("[]"). Adjacent elements are separated by the characters ", " (a comma followed by a space). Elements are converted to strings as by String.valueOf(Object), unless they are themselves arrays.
If an element e is an array of a primitive type, it is converted to a string as by invoking the appropriate overloading of Arrays.toString(e). If an element e is an array of a reference type, it is converted to a string as by invoking this method recursively.
To avoid infinite recursion, if the specified array contains itself as an element, or contains an indirect reference to itself through one or more levels of arrays, the self-reference is converted to the string "[...]". For example, an array containing only a reference to itself would be rendered as "[[...]]".
This method returns "null" if the specified array is null.
a - the array whose string representation to returntoString(Object[])public static <T> void setAll(T[] array,
                              IntFunction<? extends T> generator)
If the generator function throws an exception, it is relayed to the caller and the array is left in an indeterminate state.
T - type of elements of the arrayarray - array to be initializedgenerator - a function accepting an index and producing the desired
        value for that positionNullPointerException - if the generator is nullpublic static <T> void parallelSetAll(T[] array,
                                      IntFunction<? extends T> generator)
If the generator function throws an exception, an unchecked exception
 is thrown from parallelSetAll and the array is left in an
 indeterminate state.
T - type of elements of the arrayarray - array to be initializedgenerator - a function accepting an index and producing the desired
        value for that positionNullPointerException - if the generator is nullpublic static void setAll(int[] array,
                          IntUnaryOperator generator)
If the generator function throws an exception, it is relayed to the caller and the array is left in an indeterminate state.
array - array to be initializedgenerator - a function accepting an index and producing the desired
        value for that positionNullPointerException - if the generator is nullpublic static void parallelSetAll(int[] array,
                                  IntUnaryOperator generator)
If the generator function throws an exception, an unchecked exception
 is thrown from parallelSetAll and the array is left in an
 indeterminate state.
array - array to be initializedgenerator - a function accepting an index and producing the desired
 value for that positionNullPointerException - if the generator is nullpublic static void setAll(long[] array,
                          IntToLongFunction generator)
If the generator function throws an exception, it is relayed to the caller and the array is left in an indeterminate state.
array - array to be initializedgenerator - a function accepting an index and producing the desired
        value for that positionNullPointerException - if the generator is nullpublic static void parallelSetAll(long[] array,
                                  IntToLongFunction generator)
If the generator function throws an exception, an unchecked exception
 is thrown from parallelSetAll and the array is left in an
 indeterminate state.
array - array to be initializedgenerator - a function accepting an index and producing the desired
        value for that positionNullPointerException - if the generator is nullpublic static void setAll(double[] array,
                          IntToDoubleFunction generator)
If the generator function throws an exception, it is relayed to the caller and the array is left in an indeterminate state.
array - array to be initializedgenerator - a function accepting an index and producing the desired
        value for that positionNullPointerException - if the generator is nullpublic static void parallelSetAll(double[] array,
                                  IntToDoubleFunction generator)
If the generator function throws an exception, an unchecked exception
 is thrown from parallelSetAll and the array is left in an
 indeterminate state.
array - array to be initializedgenerator - a function accepting an index and producing the desired
        value for that positionNullPointerException - if the generator is nullpublic static <T> Spliterator<T> spliterator(T[] array)
Spliterator covering all of the specified array.
 The spliterator reports Spliterator.SIZED,
 Spliterator.SUBSIZED, Spliterator.ORDERED, and
 Spliterator.IMMUTABLE.
T - type of elementsarray - the array, assumed to be unmodified during usepublic static <T> Spliterator<T> spliterator(T[] array, int startInclusive, int endExclusive)
Spliterator covering the specified range of the
 specified array.
 The spliterator reports Spliterator.SIZED,
 Spliterator.SUBSIZED, Spliterator.ORDERED, and
 Spliterator.IMMUTABLE.
T - type of elementsarray - the array, assumed to be unmodified during usestartInclusive - the first index to cover, inclusiveendExclusive - index immediately past the last index to coverArrayIndexOutOfBoundsException - if startInclusive is
         negative, endExclusive is less than
         startInclusive, or endExclusive is greater than
         the array sizepublic static Spliterator.OfInt spliterator(int[] array)
Spliterator.OfInt covering all of the specified array.
 The spliterator reports Spliterator.SIZED,
 Spliterator.SUBSIZED, Spliterator.ORDERED, and
 Spliterator.IMMUTABLE.
array - the array, assumed to be unmodified during usepublic static Spliterator.OfInt spliterator(int[] array, int startInclusive, int endExclusive)
Spliterator.OfInt covering the specified range of the
 specified array.
 The spliterator reports Spliterator.SIZED,
 Spliterator.SUBSIZED, Spliterator.ORDERED, and
 Spliterator.IMMUTABLE.
array - the array, assumed to be unmodified during usestartInclusive - the first index to cover, inclusiveendExclusive - index immediately past the last index to coverArrayIndexOutOfBoundsException - if startInclusive is
         negative, endExclusive is less than
         startInclusive, or endExclusive is greater than
         the array sizepublic static Spliterator.OfLong spliterator(long[] array)
Spliterator.OfLong covering all of the specified array.
 The spliterator reports Spliterator.SIZED,
 Spliterator.SUBSIZED, Spliterator.ORDERED, and
 Spliterator.IMMUTABLE.
array - the array, assumed to be unmodified during usepublic static Spliterator.OfLong spliterator(long[] array, int startInclusive, int endExclusive)
Spliterator.OfLong covering the specified range of the
 specified array.
 The spliterator reports Spliterator.SIZED,
 Spliterator.SUBSIZED, Spliterator.ORDERED, and
 Spliterator.IMMUTABLE.
array - the array, assumed to be unmodified during usestartInclusive - the first index to cover, inclusiveendExclusive - index immediately past the last index to coverArrayIndexOutOfBoundsException - if startInclusive is
         negative, endExclusive is less than
         startInclusive, or endExclusive is greater than
         the array sizepublic static Spliterator.OfDouble spliterator(double[] array)
Spliterator.OfDouble covering all of the specified
 array.
 The spliterator reports Spliterator.SIZED,
 Spliterator.SUBSIZED, Spliterator.ORDERED, and
 Spliterator.IMMUTABLE.
array - the array, assumed to be unmodified during usepublic static Spliterator.OfDouble spliterator(double[] array, int startInclusive, int endExclusive)
Spliterator.OfDouble covering the specified range of
 the specified array.
 The spliterator reports Spliterator.SIZED,
 Spliterator.SUBSIZED, Spliterator.ORDERED, and
 Spliterator.IMMUTABLE.
array - the array, assumed to be unmodified during usestartInclusive - the first index to cover, inclusiveendExclusive - index immediately past the last index to coverArrayIndexOutOfBoundsException - if startInclusive is
         negative, endExclusive is less than
         startInclusive, or endExclusive is greater than
         the array sizepublic static <T> Stream<T> stream(T[] array)
Stream with the specified array as its
 source.T - The type of the array elementsarray - The array, assumed to be unmodified during useStream for the arraypublic static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive)
Stream with the specified range of the
 specified array as its source.T - the type of the array elementsarray - the array, assumed to be unmodified during usestartInclusive - the first index to cover, inclusiveendExclusive - index immediately past the last index to coverStream for the array rangeArrayIndexOutOfBoundsException - if startInclusive is
         negative, endExclusive is less than
         startInclusive, or endExclusive is greater than
         the array sizepublic static IntStream stream(int[] array)
IntStream with the specified array as its
 source.array - the array, assumed to be unmodified during useIntStream for the arraypublic static IntStream stream(int[] array, int startInclusive, int endExclusive)
IntStream with the specified range of the
 specified array as its source.array - the array, assumed to be unmodified during usestartInclusive - the first index to cover, inclusiveendExclusive - index immediately past the last index to coverIntStream for the array rangeArrayIndexOutOfBoundsException - if startInclusive is
         negative, endExclusive is less than
         startInclusive, or endExclusive is greater than
         the array sizepublic static LongStream stream(long[] array)
LongStream with the specified array as its
 source.array - the array, assumed to be unmodified during useLongStream for the arraypublic static LongStream stream(long[] array, int startInclusive, int endExclusive)
LongStream with the specified range of the
 specified array as its source.array - the array, assumed to be unmodified during usestartInclusive - the first index to cover, inclusiveendExclusive - index immediately past the last index to coverLongStream for the array rangeArrayIndexOutOfBoundsException - if startInclusive is
         negative, endExclusive is less than
         startInclusive, or endExclusive is greater than
         the array sizepublic static DoubleStream stream(double[] array)
DoubleStream with the specified array as its
 source.array - the array, assumed to be unmodified during useDoubleStream for the arraypublic static DoubleStream stream(double[] array, int startInclusive, int endExclusive)
DoubleStream with the specified range of the
 specified array as its source.array - the array, assumed to be unmodified during usestartInclusive - the first index to cover, inclusiveendExclusive - index immediately past the last index to coverDoubleStream for the array rangeArrayIndexOutOfBoundsException - if startInclusive is
         negative, endExclusive is less than
         startInclusive, or endExclusive is greater than
         the array size Submit a bug or feature 
For further API reference and developer documentation, see Java SE Documentation. That documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and working code examples.
 Copyright © 1993, 2016, Oracle and/or its affiliates.  All rights reserved. Use is subject to license terms. Also see the documentation redistribution policy.