1. Difference between the driver and runtime APIs
The driver and runtime APIs are very similar and can for the most part be used interchangeably. However, there are some key differences worth noting between the two.
Complexity vs. control
The runtime API eases device code management by providing implicit initialization, context management, and module management. This leads to simpler code, but it also lacks the level of control that the driver API has.
In comparison, the driver API offers more fine-grained control, especially over contexts and module loading. Kernel launches are much more complex to implement, as the execution configuration and kernel parameters must be specified with explicit function calls. However, unlike the runtime, where all the kernels are automatically loaded during initialization and stay loaded for as long as the program runs, with the driver API it is possible to only keep the modules that are currently needed loaded, or even dynamically reload modules. The driver API is also language-independent as it only deals with cubin objects.
Context management
Context management can be done through the driver API, but is not exposed in the runtime API. Instead, the runtime API decides itself which context to use for a thread: if a context has been made current to the calling thread through the driver API, the runtime will use that, but if there is no such context, it uses a "primary context." Primary contexts are created as needed, one per device per process, are reference-counted, and are then destroyed when there are no more references to them. Within one process, all users of the runtime API will share the primary context, unless a context has been made current to each thread. The context that the runtime uses, i.e, either the current context or primary context, can be synchronized with cudaDeviceSynchronize(), and destroyed with cudaDeviceReset().
Using the runtime API with primary contexts has its tradeoffs, however. It can cause trouble for users writing plug-ins for larger software packages, for example, because if all plug-ins run in the same process, they will all share a context but will likely have no way to communicate with each other. So, if one of them calls cudaDeviceReset() after finishing all its CUDA work, the other plug-ins will fail because the context they were using was destroyed without their knowledge. To avoid this issue, CUDA clients can use the driver API to create and set the current context, and then use the runtime API to work with it. However, contexts may consume significant resources, such as device memory, extra host threads, and performance costs of context switching on the device. This runtime-driver context sharing is important when using the driver API in conjunction with libraries built on the runtime API, such as cuBLAS or cuFFT.